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Introduction 

This progres report  ummarizes some of the resea 

15 September 1967 to 15 March 1968. 

=h conducted from 

During this period, the following problems were considered : 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Optimum Estimation 

Solution of the lst, Znd, and 3rd order  Phase Locked Loop Equations 

Threshold Extension of the Frequency Locked Loop 

Spike Detection and Correction 

Thresholds in FM/FM Systems 

Threshold of SSB/FM Systems 

Synchronization of P S K  Signals 

Transmission & Reception of Television Signals through a Noisy Channel 

A study of a Slow-Scan TV 

Data Compression Techniques with Application to TV 

Extreme-Value Detection: A New Non Parametr ic  Detector 

F M  Multipath 

Recursive Techniques 
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Three of these projects a r e  discussed below. A complete report  

summarizing all of the research conducted under this grant will be presented 

in September 1968. In that f i n a l  report, a complete list of papers published, 

Ph. D. dissertations, and Masters Theses, will a l so  be given. 

Contributors to this report  a r e  : Professors Boorstyn, Clarke, Hess, 

Pickholtz, Schilling, and Wolf; a lso Messrs.  Cassara,  Hoffman, Milstein, 

Oberst, Osborne, Stochel, Tepedelenlioglu, Unkauf and Zeger. 
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I .  THRESHOLD PERFORMANCE O F  PHASE LOCKED 

LOOP DEMODULATORS 

A new method i s  presented f o r  finding the expected number of spikes in 

a phase locked loop of any order ,  with o r  without modulation. 

can a l so  be employed to determine the threshold of FMFB, F M  discriminators 

The procedure 

and the Maximum likelihood Estimator. The low pass equivalent gaussian 

noises x(t), y(t) in the differential equation describing the system (PLL o r  

FMFB) a r e  replaced by the deterministic time functions (Conditional Expec- 

tations) 

and solved on a digital computer. 

the time when x(o) (quadrature noise) = 0, and a surface (s)  in 2(o), y(o), ?(o )  

space is determined which indicates the region A where spikes in the demod- 

ulator a r e  obtained. F r o m  this the expected number of spikes per second is 

calculated. 

The mid spike time (t = 0 )  is taken to be 

Results are presented fo r  the f i rs t  and the second order (using a constant 

plus integral  f i l t e r )  phase locked loop, and for  an ordinary F M  discriminator 

(which can be shown to be equivalent to a PLL of infinite gain). 



b 2 
t 

Introduction 

For  the past  several  years  there has been a great  deal of research  to 

determine the threshold behavior of the phase locked loop. 

there a r e  important deficiencies in  the analyses to date. 

have assumed that the input noise is white, and have neglected the effect of 

the modulation. The design of a P L L  is, however, vastly different if there 

is modulation than when there is no modulation. 

However, 

These analyses 

The expected number of spikes in the output of a phase locked loop 

decreases  as the gain of the PLL is reduced, if there  is no modulation. 

When modulation is present, one finds that there is a minimum loop band- 

width below which distortion results.  

large.  

spikes. 

The spikes present in this region is 

Increasing the PLL bandwidth resul ts  in a decrease in the number of 

However, we know that infinite bandwidth is equivalent to using a 

discriminator,  hence an  optimum bandwidth exists which can only be found 

by considering the effect of the modulation. 

In this paper a Carson's rule 3dB IF bandwidth equal to Z ( B  t 1) fmHz is 

employed, where fl is the modualtion index, and fm the modulation frequency. 

Square wave modulation is considered. 

sents  a worst-case solution since the number of spikes occurring per  second 

The square wave modulation repre-  

is proportional to the deviation A f  (2) , 
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Mathematical Preliminaries 

A. F M  Discriminator 

The output of a n  IF discriminator when integrated is : 

1 + x(t) 

x(t) cos @M + y(t) s in  @ 

- y(t) cos 4JM (t) = @J (t) t a r c t a n  
M V FMD 

where 

= phase of the modulating signal @M 

x(t) = quadrature low pass equivalent noise 

y(t) = in phase low pass equivalent noise 

A spike occurs when the arctan term jumps f 217 (see Ref. 2 ) .  

B. Phase Locked Loop Differential Equations 

1. First Order Loop 

A block diagram of a first order phase locked loop is shown in Figure 1. 

The differential equation describing the loop is easily shown to be 

. 
d + G s in  (4J-4M) = G (x(t) cos 4J t y(t)  s in&)  

where 

d = phase of VCO output 

G = loop gain and 3dB bandwidth of PLL. 

W e  let the modulating signal be Z T T A ~ .  Thus QM(t) = 2n(Af)t. When considering 

pnise, this rcpi-esenis a w o r s t  case solution. 
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The solution of Eq. 2 with no noise is  

1 2lT A f  d( t )  = 2 l ~ t A f  - arcs in  ( - G 

F o r  proper operation of the PLL (low distortion) the e r r o r  voltage 

( b  - 6,) mus t  be much smaller in magnitude than n/2,  o r  

2T*f )  << - IT 
2 arcs in  ( - G 

(1.3) 

(1.4) 

which implies that 

2. Second Order Loop 

A block diagram of a second order  constant plus integral phase locked 

loop is shown in Fig. 2. The differential equation describing the loop is : 

e 

d t 2G1 [x(t) s in  d - y(t) cos d t cos (d-4,) ] 

d t GIGZ sin (d - d,) = G1[(2i t G2 x) cos d t 

+ t G2y) s in  d t 6, cos  (4 - d,)] 

where 

d is the phase of the VCO output 

G1 (2 t Gz) / s - is the transfer function of the constant plus 
integral filter . 

When there  is no noise and I d-d,I<< - l-r and the PLL equation becomes, 2 '  



' and 

5 

In this report  G1 = G = G (critically damped). Equation 1. 8 reduces to 2 

The 3db bandwidth of the PLL is J m G  = 2.5G. 

The bet ter  way to  view this loop is to consider the t ransfer  between the 

modulating phase and the e r r o r  phase of the loop, since for proper. operation, 

this e r r o r  phase must  be much les s  than  - Then i-r 
2 '  

2 
(1 .10)  

This represents  a high pass fi l ter  with a 3db lower frequency of 

E- 1G" 0.645G. F o r  proper operation, the modulating frequencies must  

be considerably less than 0. 6436 in order to maintain a small  phase (for 

low distortion). Thus, the e r ro r  bandwidth 0. 643G is of m o r e  practical  

in te res t  than the PLL bandwidth. F o r  example, if dM(t) = B sinw t m 

Bwm 2 2 w  G 

w + G  m 

sin - arctan( 2m .)I 
G -urn 2 Q (t) = 2 e 

F r o m  Eq. 1. 11, fo r  low distortion, G must be such that 

Bwm2 ll << - 
2 2 

w .. t G  
LIl 

(1.11) 

(1.12) 
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' C. Noise Model 

Instead of the random processes x(t) and y(t), which a r e  the quadrature 

and in phase low pass equivalent noises respectively, we shall use the 

following deterministic signals (conditional expectations) with random ~ 

I 

variable parameters : 

We consider the mid spike time, t = 0, as being the t ime when x(o) = 0. Thus, 

Eq. 1.13 becomes 

x (t) = E(x(t) / x(o) = 0 , $(o) ) . (1. 15) 1 

The IF' fi l ter  is assumed to consist of the cascade of two idevtical 

stages, each single tuned with a 3db bandwidth of two radians per second. 

Thus, the low pass noise components x(t) and y(t)  have the spectrum 

2 
where 0 is the variance of the random processes x(t), y(t). It then 

follows that: 
W 

R(t) = R x ( t ) = R  (t) = - 1 1 S(w) ejwtdw = D  2 (1+  It!) e - It1 
-0 

Y 2l-r 

(1. 16) 

(1. 17a) 

(1. 17b) 
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The conditional density of x(t) given x(o)  , s(o) is 

2 (I - R2(t) - k2(t)) 
4 4 20 (1. 18) 

\ a  5 -  / 

The conditional density of y(t) 

Eq. 1. 1 9  

f (y ( t )  / y(o) , +(o) ) has the same form a s  

Using Eqs. 1.17a, 1. 17b, and 1 .  18, we find fo r  the following conditional 

expectations : 

- (t) x,(t) = E[x(t) / x(o) = 0,  ;(o)] =g(o)  t e  

- (t) Y , ( t )  = ECyW Y ( 0 )  Y 30, l  = ( Y ( 0 )  (1 + (t) 1 -k ?(o> t 1 e 

The above deterministic functions is the noise model used in the PLL 

analyses which follows. A typical noise t ra jectory is shown in Fig. 3 .  

(1. 19a)  

(1. 19b) 

D. Computation of the Expected Number of Spikes per Second 

Using a digital computer, and the noise model of Eq. 1. 19, the 

differential equations of the PLL (see Eq. 1.2 and Eq. 1 . 6 )  a r e  solved. A 

fourth order  Runge-Kutta start ing procedure is used, with a Moultons pre- 

dictor-corrector  program. The solution is made over a period of time f rom 
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t = - 5 to t = t 1 2  seconds. A hunting procedure on the parameters  ; (o)  , 

y(o) , f(o) is used in the program such that a "spike" surface in 2(0 )  , y(o), 

q ( o )  space is determined. Values of the parameters &(o )  , y(o), $(o) on one 

side of this surface cause the phase e r ro r  between the phase output of the 

PLL VCO, and the phase of the modulation to be t IT at t =  12 seconds. - 
Values of the parameters on the other side of this surface are  zero  when 

t = 12  seconds. 

The expected number of spikes per second is simply the expected 

number of t imes the random vector $(o), y(o) ,  f (o) is in a spike region. 

F r o m  Rice"), we get 

N = 121 f(x(o) = 0, G(o) ,  y(o), f(o) ) d& dy d; 
S 

(1.20) 

where S = spike regions 

N = expected number of spikes/sec 

f (x, 2y ,  +) = joint gaussian density of x, $, y, 9 . 

The integral  is performed by approximating the spike surfaces by plane 

segments, and summing the resul ts  of Eq. 1. 20 f o r  each segment. A digital 

computer was  used to perform this tedious computation. 

To simplify computations, the equations were  normalized. The 3db 

bandwidth of the IF fil ter  is 

' = 2(0.643) = 1.286 radians/sec. (1.21) wIF 
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To compare the results for  this IF bandwidth to resul ts  for  other bandwidths 

we may introduce a time scale to the phase lock loop equations : 

t' = t / K  

This resul ts  in a new IF frequency: 

u1 = K w' radians/sec.  IF IF 

for  the f i r s t  o rder  loop, 

LF 
IF 

w 

w 
G = K G = -  G' 

while f o r  the second order  loop 

IF w 

IF 
IF 

w 

w 
G2 = I GIZ 

The number of spikes /second is then 

w 
N = K N = -  IF N' 

w ' IF 
or 

IF12 w IF u) 

where 

( 1 .  22a) 

(1.22b) 

(1. 23)  

(1. 24a) 

(1.24b) 

(1.25a) 

(1.25b) 

B = modulation index 

f = modulating frequency m 

w = IF bandwidth (radians/sec).  II? 
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The spike boundary can be found for  the FM discriminator by plotting 

Eq. 1. 1 f r o m  t = 5 to t 12 seconds instead of solving a differential equation. 

Fig. 4 shows the resulting spike surface f o r  a F M  discriminator with a 

constant modulation offset of 0 .6  radians/second. (This is equivalent to 

square wave modulation). It is interesting to note that there  are multiple 

spike regions and that no positive spikes occur in the region s shown. 

The surface for the first order  PLL with no modulation is shown in 

F i g .  5. Negative spikes occur f o r  v a l u e s  of k(o) ,  y(o), ?(o) to the right of the 

surface and none for  those to the left. The surface for  positive spikes is 

simply a m i r r o r  image of the one shown, below the y(o), y(o), plane. When 

we have the same kind of modulation that was described above fo r  the FM 

discriminator we obtain the surface shown in Fig. 6. Again, the spike region 

is to the right (negative spikes). The surface is shown only f o r  position ?(o) 

because the surface is symmetrical  in $ ( o )  

F o r  the second order ,  critically damped PLL with a proportional plus 

integral  filter, a sine wave modulation was used, in order to determine 

where m o s t  spikes occur. It was found that they occurred almost always 

when the peak frequency deviation occurred. Since the bandwidth of the P L L  

is considerably broader then the modulating frequency, to consider the 

probability of receiving spikes at the peak of the sine wave modulation is 
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practically equivalent to considering the probability of receiving spikes with 

1 a constant input frequency deviation. ( = 0. 6 radians/sec. ) . The resulting 
1 

spike surface is shown in F i g .  7. I 

The expected number of spikes per second for  the above surfaces was 

calculated using Eq. 1 .  20. The normalized resul ts  are plotted in F i g .  8. 

The curves for the first order  P L L  show that spikes a r e  approximately a 

thousand times more  frequent with modulation than without. Also it is 

evident that the second order  PLL with modulation is almost a hundred 

t imes bet ter  than the f irst  order with modulation. 

i 

I 

I Conclusions 

The expected number of spikes, for  a n  F M  Discriminator with modulation, 

obtained f rom the spike surface of Fig.4, was found to be almost the same 

as that f o r  no modulation. These results, together with a simple approach 

heurist ically derived by Rice"), a r e  compared in F ig .  8. The difference, in 

terms of c a r r i e r  to noise ratio, i s  only 0. 5db. 

I 

I It is worth noting that the method allows the comparison of different 

systems by comparing their respective spike boundary surfaces.  It the 

surface of one system is closer  to the origin than another, then the first 

system generated m o r e  spikes than the second under the same conditions. 

The present work on PLL systems is being extended to higher order 

loops and work on F M F B  has begun. 
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II. EQUIVALENCE OF FM THRESHOLD EXTENSION RECEIVERS 

p/ (9 
FM threshold extensions 9 achieved in F M  detectors using the phase 

locked loop (PLL), the frequency locked loop (FLL), or  the frequency 

demodulator with feedback . In this section the F L L  and PLL a r e  shown 

to$imiting )p' forms of the FMFB. 

1. h t r  oduc tion 

It is wel l  known '' " 3' that the FM noise threshold may be extended by 

employing an  FM detector that uses a properly designed phase locked loop 

(PLL) o r  a frequency demodulator with feedback (FMFB). It has recently 

been demonstrated that the frequency locked loop (FLL) is also cipable of 

threshold extension. In this section it shall be demonstrated that the defining 

equations for the PLL and F L L  a r e  limiting forms of the defining equations 

for  the FMFB; hence rather than having three distinct devices capable of 

threshold extension, we have only one basic device (FMFB) from which the 

other two devices (PLL and FLL)  a r e  derivable, In particular it is shown 

5 

that as the bandwidth of the internal IF fi l ter  of the FMFB is reduced to zero  

the FMFB and the P L L  have the same defining equations. Conversely, a s  the 

bandwidth is increased without bound the equations f o r  the F M F B  and F L L  a r e  

identical. 

e 
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An interesting aspect of this equitalence is that a better physical 

understanding of the threshold extension. mechanism of the FMFB may be 

obtained. Although some physical insight into the PLL and F L L  has been 

gained, very little exists for the FMFB. In a previous paper it has been 6 

demonstrated that the PLL improves the F M  noise threshold by not tracking 

(or "losing lock" during) many of the noise "clicks" 
7 that would normally 

appear at the output of a limiter-discriminator. In addition, it has been 

shown that the F L L  imporves the F M  noise threshold by a "holding" mech- 

anism that reduces the strength of many of the noise "clicks". Consequently, 

since a n  FMFB lies somewhere between the F L L  and the PLL if its internal 

IF f i l ter  bandwidth is  neither zero nor infinity the FMFB should achieve 

threshold extension by "losing lock" dur ing  some noise "clicks" reducing 

the strength of others. 
+. 

9 This phenomenon was indeed observed by Cassara. He compared 

the outputs of an FMFB and a limiter-discriminator which were excited 

by the same unmodulated F M  car r ie r  plus narrow band noise (both centered 

about the same frequencyu, )and noted that some of the noise "clicks" exist- 

ing a t  the output of the limiter-discriminator did not exist a t  a l l  a t  the out- 

put of the FMFB, while other noise "clicks" were reduced in strength o r  

0 

area.  With an unmodulated ca r r i e r ,  no noise "click" appeared a t  the output 

of the FMFB which did not appear at the output of the limiter-discriminator. 
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Consequently demonstrating the equivalence of the defining equations 

of the three devices yields a starting point for  the understanding of the 

FMFB. 

a r e  developed. The equation for  the FMFB is then developed a s  a function of 

its internal IF fi l ter ,  whose bandwidth is first increased without bound and 

then reduced to zero. 

and PLL is thus demonstrated. 

To begin the analysis the defining equations for  the F L L  and P L L  

Convergence of the FMEEB equation to that of the FLL 

2. Frequency Locked Loop Equation 

The block diagram of the baseband version of the F L L  is shown in 

Figure 1. 

a c a r r i e r  centered at UI modulated by an amplitude a(t)  and a phas'e $(t). The 

amplitude t e r m  a ( t )  a r i s e s  when the F M  c a r r i e r  is added to  narrow-band noise 

centered about UI 

perturbations from the narrowband noise. Without loss of generality, the 

constants associated with the limiter-discriminator and amplitude demodu- 

la tor  a r e  taken a s  unity, and the entire loop constant B/2a is associated with 

the loop fi l ter  whose impulse response is h (t) . 
loop constant is chosen such that the equivalence between the FMFB and the 

FLL is m o r e  evident. 

Here the input i s  assumed to  be in the completely general f o r m  of 

0 

whereas +(t) consists of the desired FM modulation plus 
0' 

The form of B/2a  fo r  the 
0 

E the output of the loop is defined as $(t), then by proceeding around the 

loop one quickly obtains the defining equation for  the F L L  to be 
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G(t) = 

where * denotes 2 onvolution. 

The block diagram of Figure 1 provides some insight into the threshold 

extending mechanism of the FLL. Clearly if a(t) is small the closed loop 

bandwidth of the loop decreases  and the output +(t) is permitted small 

variations (especially if the low pass  loop filter has a pole close to the origin 

which it should have). However, a s  is known , when a noise "click" occurs 10  

in i(t) which is a step of * ~ T T  i n  $(t) , a(t) has a high probability of lying very 

close to zero;  thus $(t) is "held" during the occurence of a "click" which 

resul ts  in  the "click" being suppressed at the output. 

3. Phase Locked Loop Equation 

The block diagram of the PLL is shown in Figure 2. Here the same 

input signal is assumed as for  the FLL and the output signal is similarly 

defined as @(t). In addition without loss of generality the constant of the 

voltage controlled oscillator VCO is taken a s  unity and the entire loop 

constant B is associated with the output amplitude of the VCO. Here again 

one proceeds around the loop, recognizes that the loop filter re jects  the 

second harmonic terms (in the vicinity of 2w ) appearing at the multiplier 

output, and writes the defining equation fo r  the loop in the form 

0 
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In this loop a s  in the F L L  the closed loop bandwidth is controlled by a(t). 

Here however, during a "click" in i ( t )  and a step of f 2 n  in $(t), small  

values of a(t) prevent &(t) o r  cp(t) from changing rapidly. Therefore as $(t) 

varies by & Z I T  sin [$(t) -cp(t)l passes through an entire cycle and returns to  

its starting point, thereby leaving the initial conditions of the P L L  unchanged 

f rom those immediately preceding the "click". Thus the loop "loses lock" 

f o r  a cycle and no "click" appears a t  the output. Only those steps 'in $(t) 

during which a(t) is reasonably large produce output "clicks" since the P L L  

is then able to track the steps in $(t). 

4. Frequency Demodulator with Feedback Equation 

The block diagram of the F M F B  is shown in Figure 3. Here again the 

input signal is identical with the one applied to  the F L L  and P L L  and the 

output signal is again defined as @(t). Again the constants of the VCO and 

the discriminator a r e  chosen as unity. The IF filter is assumed to be a 

single-pole filter (for stability) whose t ransfer  function is given by 

where w is the difference between the output frequency w1 of the "free 2 

running" VCO and the input frequency wo, CY. is the distance of 
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the poles of H 

i s  the Laplace Transform operator. 

(s )  f rom the imaginary axis in the complex s plane, and e IF 

The discriminator in the loop has no limiter and has the property that 

if its input S (t) is given by 1 

S,(t) = 6(t)  cosrcu2t t k ( t ) I  

its output S2(t) is given by 

S2(t) = 6( t )  i(t) . 

(2.4) 

( 2 . 5 )  

A little thought readily shows that such a description is valid for  any 

conventional discriminator not preceded by a limiter for  which UI - Ii1>>6(t)/b.(t). 

In general the complete equation for  c(t) fo r  the FMFB may be readi ly  written 

2 

down f rom the block diagram of Figure 3 ;  however its form is s o  complex 

that little or  no insight can be gained from it. Consequently in the following 

paragraphs only the two desired limiting forms of the FMFB a r e  considered. 

First the bandwidth of H 

permitted to approach zero. 

(s)  is permitted to become large and then it is IF 

Large Bandwidth for  Loop IF Filter. FMFB Approaches FLL. 

As the 

the band of 

bandwidth of the loop IF filter becomes large compared with the 

frequencies occupied b y  

2 



the fi l ter  output is an  attenuated, but undistorted, version of its input 

which is given by 

where ( l /a)  is the t ransfer  function of the IF fi l ter  in its pass-band. 

Consequently the output of the discriminator is given by 

f rom which the defining equation for the FMFB is readily obtained in the 

form 

Clearly Equations 2.1 and 2.8 a r e  identical; hence the equivalence between 

the defining equations of the FMFB and FLL in this case is demonstrated. 

It should be noted that Equation 2.8 i s  str ictly valid only if the internal 

t loop bandwidth increases without bound. In practice however, since the 

input signal to the FMFB has already been band-limited by some external 

R F  filter and since the multiplication of the input signal by the VCO output 

increases  this 

2’ 
vicinity of w 

twice as large 

band of frequencies by at most  a factor of 2 o r  3 in the 

the bandwidth of the internal IF fi l ter  need be no more than 

a s  the bandwidth of the external R F  fi l ter  to have the FMFB 

and the FLL perform in the same fashion. 

t As the IF bandwidth is increased it is assumed that the out of band 
signals a t  the multiplier output, centered at wo t w l ,  a r e  still rejected. 
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Small Bandwidth for Loop IF Filter. FMFB Approaches PLL. 

As the bandwidth of the loop IF filter becomes small compared with the 

band of frequencies occupied by 

2 

the fi l ter  output is a strongly distorted version of its input. Some idea of the 

nature of this distortion is obtained by expanding the filter output in the form ' 

a t B  Sl(t)  = { [ + 1 [cosC$(t) - cp(t)l cos w t 
2 * - sin [$(t) - cp(t)j sin w 2 d  } hLF(t) 

= [{ 9 cos [$(t) - cp(t)l}*hL(t) cos w t l 2  
- [{ aOB 2 sin [$(t) - cp(t)l}*hL(t) 

where h (t) is the impulse response of the low-pass equivalent f i l ter  of the 

narrow-band IF filter. In particular if H (s)  = 2 4 s  t 2 a s  t w  then 

L 
2 2 

IF 2 

1 
HL(s) = [hL(t)l = s+a (2. 10) 

Equation 2.9 may be rearranged still further to yield 

Sl(t)  = [ C  t c(t)] cos w2t - [D t d(t)] sinw2t (2.11) 

where C and D a r e  the average o r  dc values of the respective coefficients 

of the cos  w t and sinw t t e rms  in Equation 2. 9, and c( t )  and d(t) a r e  the 

respective values of the coefficients less their average values. If the R F  

2 2 

- 
filter preceding the loop is symmetric about w and if q(t)  = 0, it is apparent 

f r o m  symmetry  considerations that rb(t)= 0 and a(t) sin[$(t) - cp(t)] = O ;  hence 

0 
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D = 0. On the other hand, C is clearly not equal to zero; consequently 

Equation (2.11) may be further rearrenged to yield 

S,(t) = d[C t c ( t )  l2 t [d(t)I2 cos [ w  2 t+tan-' c do t c(t) 1 

f rom which follows 

It is apparent a t  this point that as the bandwidth of the IF fi l ter  (2a) 

approaches zero c(t) and d(t) become vanishingly small  compared'with C 

(more and more  of the a c  component is filtered while the dc component 

remains unchanged) and Equation (2.13) reduces to the limiting form 

(2.12) 

(2.13) 

(2. 14) 

In addition, a s  a+O, H, ( s )+l / s  which is a pure integrator; hence convolution 
L 

with h (t) in Equation 2. 

differentiation operation 

L 

a(t)B 
S2(t) = 2 

and finally 

14 corresponds to integration which cancels with the 

to yield 

(2. 15) 

(2. 16) 
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Clearly Equations 2.16 and 2.2 are identical; hence 

between the defining equations of the FMFB and the 

the equivalence 

PLL in this case 

is demonstrated. 

Although the loop IF bandwidth must theoretically reach zero to  have 

9 the FMFB function as a PLL, it has been found experimentally that f o r  

IF bandwidths l e s s  than 1/10 of the external R F  filter bandwidth the FMFB 

functions, with respect to a noise-corrupted input c a r r i e r ,  in essentially 

the same fashion as the PLL. 

Several interesting observations may be made a t  this point. First, the 

FMFB may have an arbi t rar i ly  narrow loop IF filter bandwidth and still 

successfully demodulate an  input F M  signal. This is quite obvious since the 

PLL is capable of performing such a demodulation. Previously it was 

believed by many writers' '  

at least equal to twice the frequency range occupied by the modulation 

informa tion. 

that the loop IF filter must  have a bandwidth 

Secondly, with a sufficiently narrow loop IF filter bandwidth the FMFB 

has all of the "loss of lock" problems possessed by the PLL. Consequently 

large deviations of the input ca r r i e r  in the presence of noise a r e  capable of 

throwing the FMFB "out of lock" with the resul t  of a large number of signal 

induced llclicks'f.  On the other hand, fo r  wide loop IF bandwidths the FMFB 

can never "lose lock". This is obvious since the FLL (which the FMFB 
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approaches, cf. Figure 1 )  has no VCO and therefore no mechanism by which 

to lose lock. 

the best  features of the P L L  and FLL. 

Perhaps some intermediate value of loop IF bandwidth combines 

5. Conclusion 

In this section it has been demonstrated that the defining equations of 

the FMFB degenerate into the equations f o r  the FLL and PLL as the loop 

IF f i l ter  bandwidth of the FMFB approaches infinity o r  zero respectively. 

Consequently a possibility of fur ther  physical understanding of the FMFB 

may be obtained by approaching its operation f rom the limits of F L L  opera- 

tion on one end and PLL operation on the other .  More significant, however, 

is the realization that the three basic threshold extension receivers a r e  

equivalent with respect to their defining equations to the single device, the 

FMF B. 
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III. FM MULTIPATH INTERFERENCE 

1. Introduction 

We a r e  concerned with the effects produced when a sinusoidally- 

modulated FM signal 

e,(t) = C O S C W  C t t B s i n p t l  (3. 1)  

is received in addition to a delayed, attenuated echo of the signal 

e,(t) = p cos[wc(t-At) t B sinp(t-At) t b 3 . ( 3 . 2 )  

Here, p is the relative echo strength (assumed less  than one), At is 

the echo delay time, w 

frequencies respectively, B is the modulation index, and 4 is an 

a rb i t ra ry  phase added by the mechanism of the echo path. 

received signal is 

and p a r e  the ca r r i e r  and modulation radian 
C 

The total 

e(t) = el(t)  t e,(t) . ( 3 . 3 )  

The echo creates  a characteristic interference in the output of 

the discrimimator. 

and an  ideal envelope detector. 

discussed in Section 4. 

The discriminator consists of a n  ideal differentiator 

The effect of a low-pass filter w i l l  be 
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1 
The discriminator yields output (for p <  1 , the case when the 

echo is weaker than the principal received signal)  

2 A t  p tcosJr  
AW cos pt t 2 AW sin ELL sin p(t  - 2) p 2 l t 2 p c o s J r t p  , ( 3 . 4 )  

where JI is the instantaneous phase difference between the principal and 

delayed signals ,  

A t  
C 2 2 @ = d - w A t  - 28sin E& cosp ( t -  - )  (3.5) 

and Aw is the maximum instantaneous radian frequency deviation, 

Aw = p P .  

The s i g n a l  Aw cos pt is the (desired) information received when no echo 

is present, and the remainder i s  the interference, 

p t cos At 
wi(t) = ZA sin et 2 sinp(t - - 2 P l t 2 p c O L t p 2  (3.6) 

2. Characteristics of the Interference. 

The demodulated signal plus multipath interference, 3.4, consists 

of the expected sinusoid plus pulses of variable height. A typical wave 

form of the interference alone is illustrated in Fig. 2.1. A pulse occurs 

each t ime the function (3.5) passes through an  odd multiple of TT ; at this 

1. See, for  example, Philip P. Panter, Modulation, Noise, and 
Spectral Analysis Applied to Information Transmission ; New York, 
McGraw-Hill, 1965, pp. 364 ff. 
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point the function 

pi-cos 
f ( 4 )  = 1 t 2 p c o s 4  t p 2  (3 .  7) 

reaches a (negative) peak. 

An estimate of the number of these pulses in each cycle of the 

modulation is just  twice the peak-to-peak swing of $(t) divided by the 

interval between peaks of f ( $ )  , o r  2T. (The factor  of 2 occurs because 

$(t) passes  through its range twice in each modulation cycle. ) Thus, 

( 3 . 8 )  number of pulses/modulation cycle = N = ; 4 @ I  sinp-Z-) A t  . 

It must  be emphasized that this is not a precise result. The actual 

number of pulses in a modulation cycle is dependent upon the time-indepen- 

dent t e r m  in $(t) ,  

8 = d-w C t . (3.9) 

In any case ,  the exact value of N differs by less than one f rom that 

given by 3.8. In addition, if i t  is assumed that 8 is a random variable 

of uniform density over some interval of 2TT , the expected number of 

pulses per  modulation cycle is given exactly by 3.8. 

The maximum value of N occurs when the echo modulation is 180' 

out of phase with the modulation of the pr imary signal. In this case,  

A t  4 
ls in  p-1 = 1  and N =  - fl . 2 TT 
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As p becomes larger ,  the amplitude of the pulses increases ; as 

p - 1 ,  the interference becomes impulsive. This is easily deduced f rom 

the following facts : 

2rr 
t cos 4 

d$ = O , O <  p C l  - 
0 

and 

- -  - 1 $ # nn, nodd. 
p t  cos$ 

2 '  

1 So, f o r  p = l ,  f ($)  = - - TT s(Q-nrr) 
n odd 

Similarly, the interference w. (t) (3. 6) becomes 
1 

2Aw sinpbt sinp(t- -) A t  [y 1 - l-r 

n odd 
2 2 

( 3 . 1 0 )  

( 3 . 1 1 )  

( 3 . 1 2 )  

Here, the impulses a r e  not evenly spaced in  time ; still, the number of 

impulses in a modulation cycle is approximately 

4 A t  
N =  - l-r B Isinp - 1  2 . (3. 1 3 )  

Since 6($(t)  ) = - , where the t. satisfy Jl(t.)= 0, 
1 1 

i I $'(till 

A t  
and $'(t) = 2Aw sin sin p(t- 7 )  , . becomes 2 

2 
b t  
2 

2Aw s inp  - sin p(t- 

i 
(3.  1 4 )  
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where now the t. a r e  the times that $(t) passes through an  odd multiple 
1 

A t  A t  
2 i 2  of n .  The impulses a r e  positive when the sign of [ sin p -s inp(t  - - )  1 

is negative ; the impulses a r e  negative otherwise. 

and negative pulses is equal. ) 

(The number of positive 

Note that the impulses in 3 .14 have a rea  fn. This is in contrast 

with the impulses produced by additive noise, which have a r e a  f 2 n  . 
This is explained by the phasor diagrams in Fig. 2.2, which contrasts 

the two types of interference. 

While the direction of noise pulses is generally in opposition to the 

modulation signal, no such generalization can be made for mulitpath 

interference. If we again assume that the constant phase difference 

between pr imary signal and echo is uniformly random over some interval 

of width ZIT , the probability of a multipath pulse in a short  interval dt  

is 

-kd dt , 
ZIT 

H(t) = 

o r  
(3.15 ) 1 At A t  - lawsin p -  sinp(t--) I dt 

TT 2 2 H(t) = 

Positive pulses occur only when the s ign of sinp - A t  s inp(t-  9) is 2 

negative ; otherwise, the pulses a r e  negative. F i g .  2.3 illustrates the 

regions of positive and negative pulses a s  the delay time, A t ,  varies. 
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Time regions of positive and negative pulses a s  A t  varies. The 

integral of (3.15) over a modulation cycle is just  the total number of 

pulses per cycle given by(3.8) . 

3. Interference Power 

To characterize the intensity of the interference (3.6), it i s  helpful 

to know the power of the interference. Here, the "power" of a time 

function g(t) of period T is defined as 

T 

0 

while the lrenergyl'  of a (nonperiodic) function h(t) is defined a s  

The exact value of the interference power is  not simple to  find, but 

if we (once again) average over the quantity 0 # d - w A t ,  we get 
C 

(3.16) 

Note that this power becomes infinite as p + 1. This is to be expected, 

since impulses have infinite power. In a real  system, of course, the 

pulses (and power) would be l imited by the discriminator output fi l ter  

and perhaps by amplitude failure of the discriminator as  well. The effect 

of low-pass filtering of the interference is considered in the next section. 
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4. Effect of Filtering on Interference 

As echo strength increases,  interference pulses become narrower,  

with a corresponding increase in bandwidth. At some point, the effect of 

output filtering on the interference power will become significant. 

To determine the effect on interference power of output filtering, 

the following assumption and approximations a r e  made : 

(1) The fi l ter  is an  ideal low-pass fi l ter  with cutoff frequency f 

H(f) = 1, If 1 < f ; H(f) = 0 elsewhere . 
i. e. 

0’ 

0 

(2) The f i l ter  bandwidth is sufficiently wide s o  that the energy of all 
pulses may be added independently. 

(3)  The pulses a r e  produced by the function A(t) ffJr (t) ), where 

A t  A t  
2 A(t) = 2A s inp  - sinp(t-  2) 

and f($) and $(t) a r e  given by(3.7) and(3.5) , respectively. 
It is assumed that, if a pulse occurs with peak a t  t = t i ,  it may be 
considered to have the following form : 

Thus, the t h e - a n d  amplitude-scales of the pulses a r e  held constant 
throughout the pulse. 

(4) The familiar assumption about the randomness of the constant 
phase difference, 8 ,  wi l l  be made. 

Of these assumptions, (2) is probably the most  restrictive. Pulses can 

theoretically occur arbi t rar i ly  close in time if the total signal phasor 

reverses  direction in the vicinity of the origin, F ig .  4. 1. 
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These double-pulses a r e  of opposite polarity and tend to have relatively 

small amplitude, and therefore should constitute only a small  portion of 

interference power. Barring this phasor reversal  case,  the minimum 

, where time between pulses of like polarity is - I$'(t)l max, o r  - 
A f  is the maximum frequency deviation. Here we a r e  requiring t'mt the 

audio bandpass be on the order of the R F  bandpass. 

1 1 
2n 2 Af 

The other assumptions a r e  not very restrictive. One might suspect 

that assumption (3), concerning the pulse shape, would be the source of 

considerable e r ro r .  It wil l  be seen, however, that the averaged (over e )  

power calculated with this assumption yields the (known) cor rec t  result  

fo r  the case in which the output filter is omitted. 

To find the power of the filtered interference, we need just  find the 

fi l tered energy of an  isolated pulse, and s u m  over a modulation cycle, 

taking into account the expected density of pulses (3.15). 

To calculate the filtered energy of a single pulse, we use the 

2 
Four ie r  se r ies  expansion of f(a$) : 

p t  cos a$ 2 2 3 3  f(a$) = P 2 = p c o s a $ - p  cos a $ + $  cos ap ... (3.18) 
l t p  t 2 p c o s a $  

2 
Each  t e r m  has power p , 6 'P , .... 

2 2 

%id, p. 252. 
2 
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E the filter passes the harmonics up to (radian) frequency na, then 

(3. 19) 

o r  the energy in a single,  filtered pulse i s  just  (power). (period) o r  

(3. 20) 

In the multipath interference case,  a is a time function, namely, 

(3. 21) 

and in addition the pulse is multiplied by an  amplitude function A(t), 

which i s  a l so  equal to $‘(t). 

The actual energy of the pulse is, therefore, 

4l-r f 

2 Pp 1-11 l2 &I 2 
1-P 

(3.22) 

The probability of a pulse in an  interval (t, t tdt)  w a s  shown to be 

1 - I b‘(t)l dt 9 (3.15) ll 

if the two-path phase difference, 8,  is uniformly random over some 

~ T T  interval ; theenergy of an  isolated pulse is given by 3.22 so the 

pe-.ver, zyerzged over 8. is 
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2 A t  At 2 _ g _  
2rr 

r 2l-r 2 ~ A w  sin p- 2 sinp(t--) 2 ] 2 
1 -  P 0 

= [Awsin p E I 2  2 C 

where 

f I 
0 

2 
At J A t  

(einp$ sinpIt--- 
Af P 

I1 

f loge l i p  - 
2 0 c = 1 - iJ2 sin x 

A f  I sin p t  I sinx TT L 

2 
0 

(3. 23) 

(3. 24) 

i s  the attenuation of the interference by the filter. 

The integral in(3.24)is well behaved for 0 < p < 1. For  f +a o r  
0 - -  

P +l ,  C =  1, which gives the expected result(3.16) fo r  no output filter. 

F o r  0.0 < 
f log e 1/ P 

@t Af I s - inpTl  

0 <. 1, C is given by 

f 
4 o l o g e  l /p  
TT Af 

c =  - - 
A t  
2 A f  Isinp-1 

(3.25) 

This approximation applies when great attenuation of the interference 

by the fi l ter  is experienced. 

o loge l / p  
f 

A plot of C against y = - 
I sin p-1 Af 

is shown in Fig.  4. 2. A t  
2 

It is now possible to calculate the power of the filtered multipath inter- 

ference.  Since the information output s ignal  is Aw cos pt, with power 

( A w ) ~ / ~  , the noise-to-signal power ratio is - 
C A t  2 

2 2 2 (sin p-) 
i - p  

(3.26) 
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In Fig.  4. 3 equation (3 .26) has been plotted for the special "worst 

case" when the echo modulation is 180' out of phase with that of the 

pr imary path signal. h this case,  s m  p- = 1. Various values of filter 

bandwidth f 

deviation Ap, a r e  shown. 

A t  
2 

, normalized with respect to the maximum ca r r i e r  frequency 
0 

It i s  seen that attenuation is appreciable for  a l l  values of p. This 

emphasizes the wideband character of the interference, even when the 

interference pulses a r e  for f r o m  being impulses. F o r  values of 

1 s inp - l c  1, the interference power is decreased by the square of this 

quantity, but the effective filter bandwidth is multiplied by the reciprocal 

of this quantity. 

A t  
2 

Recursive Techniques 

ht r o duc tion 

Recursive techniques provide a ra ther  simple way of handling both 

analytically and for the purpose of implementation the detection, estima- 

tion, demodulation, smoothing and data reduction of various types of 

s ignals .  They permit the consideration of more  realistic system models, 

and lead directly fa computer a l g o r i t h m s  for processing the data in the 

desired way. 
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A recursive method can be described a s  a scheme whereby the 

processing of the s ignals( i )  takes place in real  time and (ii) uses 

previously calculated results for  extended processing rather than all 

the data. F o r  the most  par t  the analytical results a r e  either in the f o r m  

of a finite difference o r  a differential equation. The former Seir,g Qsed 

for digital computer processing, the la t ter  having its application in analog 

prock ssing. 

(1 )  The early organized work in recursive processing is due to Kalman 

(1960) and was mostly concerned with l inear,  minimum mean square 

estimation o r  filtering of signals in white noise. While this problem is 

significant in its own right there remain many more difficult problems of 

an  immediate practical interest. 

(1) 

non-Gaussian noise, time varying channels, optimum and sub-optimum 

but r ea l  time realizeable demodulation and other nonlinear processing. 

These include : 

Detection and estimation of a rb i t r a ry  signal in noise. Non white, 

(2) 

simplify and modify the processing operations as measured conditions on 

the channel change. This would be very impractical and cumbersom with- 

Adaptive techniques and the application of recursive methods to 

out recursive methods. 

It i s  important to note that while Kalman's approach requires very 

little of the statistics of the signals and noises that a r e  operated upon, 
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(only second moments) this is not true for the problems cited here. The 

recursive method, generally applied, uses more  of the statistical struct-  

u re  of the signals and noise, but since the end result  requires only present 

data and only previous estimates, offers significant advantages in simpli- 

city, and in minimizing memory requirements. 

Detection of Signals in Noise 

As an  example of a recursive method which has been recently worked 

out(2) we wil l  compare the conventional approach to the problem of detect- 

ing binary s igna ls  in correlated noise to the recursive approach. It is not 

to be inferred that this example is unique nor that the recursive method 

applies only to this problem. 

Problem : 

probability of e r r o r  . 
Detection of Signals in additive, non-white noise with minimim 

Observations : Y ( J )  = S.(J) t X(J) O <  - J L  t 
i =  1 .2  . 1 

Given: Si(t) i = 1,2 and “statistice” of X(t)  . 
Constraints on Signal Processing : only discrete samples (or its deriva- 

t ives) are available e. g. Y(A), Y(26), . . . Y(nA) o r  

1 1 1 
e. g. Y(A),Y (A),  Y(2A), Y (261, .. . Y(nA), Y (nA) 

etc. 
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Optimum solution : (Likelihood Ratio) 

L(y(t) = fy(y(J) , J l  t /S2) 

fy(Y(J)  8 JL t /S, )> 

b .  o 

2 If L(Y (t) ) exceeds the threshold b 

Conventional approach using descrete samples when N(t) is Gaussian 

decide S otherwise decide S 
0' 1 

with known covariance function 

The test statistic (log L(Y)  ) is - 

The signal to noise ratio is 

The minimum e r r o r  probability is 

1 1 m i n P  (E) = - erfc - 
n 2 2 n 

Problems with conventional approach 

1) 

2) 

3 
The matr ix  C 

All the observations Y must  be s tored.  

that must  be inverted is usually very large (n= 10 ) . 
n 

- 
3; ~ s k i n g  zz  zdditional observation increases the dimension of the 

problem by 1 requiring 
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( n t l  j1 a) 

b) 

c) A new computation of the minp (E) 

The memory requirements and computational work grows very 

A new matr ix  inversion C 

A new computation of the tes t  statistic 8 n 

n t l  

4) 

rapidly with She number of samples taken. 

5) 

technique s . 
6) 

The formulation does not lend itself to sequential o r  null-zone 

The tes t  statistics (likelihood ratio) can be conveniently written 

for  Gaussian noise only. 

7) 

processor  must  be found by solving an integral equation. Explicit 

solutions a r e  generally not available nor is the minimum P(E). 

In the continuous processing of the received s i g n a l s ,  the optimum 

Recursive Approach 

Assume the noise is generated by 

dk- 1 d 
L {x(t)}= ( - dk + a (t) - t . . . t al(t)dt t ao)  X(t) = w(t) k-1 dtk-l 

dtk 

W(t )  is a white process with covariance function q 6 (t -t ) 

[Rational Spectral Density noise is a special case] 

0 1 2  

x_(t) = A(t) 4- LWt) 

e with state vectors 
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X =  A =  

0 1 0 . . .  0 

0 0 1 . . .  0 

. . . e  ..... . . .  ... 

-a0W -al (t) . .. -a (t) k- 1 

. .  
0 

0 

1 - -  
X(t) is vector-Markov. - 

The t e s t  statist ic then satisfies the differnece equation : 

T -1 8 = e  t 2 @  - BS -1) K (Y, - B Y  ) 
-n-1 n -n n n-1 n 

Y -1 e =2s TC 
0 - 0  0 - 0  

where  

T B = C  C- l  ; c, = E Y(t tA)  X (t) 
A 0  

K = Co - CA Co - l  c: 

The mechanization is shown in F i g u r e  1. 

Note : 1) Order  of matr ices  is k<<n. 

2 )  B and K do not depend on n (They a r e  constants in the 

recursive process)  . 
Fur thermore ,  
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Advantapes of Recursive Approach 

The only matrix that must  be inverted is K and is usually small  
(3 o r  4 ) .  

Once K is inverted, it is the same no matter  how many samples a r e  
taken. 

Only the previous observation of Y - must  be stroed thereby consider- 
ably reducing memory requirements. 
not grow with the data taken. 

The memory requirement does 

The difference equation lends itself to sequential o r  null-zone o r  feed- 
back communications since the tes t  statistic may be updated with only 
the addition of new data. Also, the closed-form expressions for  the 
s i g n a l  to noise ratio (and P(E) ) may be used to optimize the perform- 
ance of any such schemes. 

The tes t  statistic has a similar form even f o r  non-gaussian noise 
statis tics. 

In the continuous case (not discussed here)  the mechanization always 
yields realizeable optimum solutions which may be implemented in a 
straight-forward, practical way. 

Extensions and Further Promising Research Areas  

The above example is but one special, albeit important application of 

recursive techniques. The results already obtained can be immediately 

applied to a much la rger  class of problems that simplify the detection of 

signals in Gaussian noise. Fo r  example, the problems involved in pattern 

recognition, detection of stochastic signals, nonstationary systems and 

m-a ry  detection can a l l  be treated in the same framework. Some unex- 

plored a r e a s  of great practical and theoretical interest  where the state- 
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variable approach f o r  recursive formulation a r e  expected to yield 

results a r e  : 

1) Waveform estimation - This includes optimum, real-t ime demod- 

ulators for  F M  o r  "twisted" modulation. The recursive approach ensures 

realizability as opposed to the ''fixed observation!! approach usizg Kashine- 

Loeve, integral equation techniques (3) . For example, the integral equation 

solution to maximum a-posteriori  likelihood detectors requires many 

uncertain approximations and manipulations to extract  a realizeable 

structure f o r  the equations. This would not be the case of a recursive form 

of the solution can be found. 

2) 

complexity of the statistical description of the system (noise, signal, 

channel) . Thus, if these a r e  not known completely, a-priori ,  the measure-  

ment  of this characteristics can be incorporated relatively simple into the 

receiver o r  processing structures. 

measurement  of channel parameters and processing of data. 

3) 

distrubances can be incorporated into the model and studied. Diversity 

techniques can be handled as well. 

Adaptive Techniques - The use of recursive techniques reduces the 

This w i l l  result  in simultaneous 

Random channels and the effects of fading, multipath and other such 
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